Response of the solar atmosphere to magnetic field evolution in a coronal hole region

نویسندگان

  • S. H. Yang
  • J. Zhang
  • C. L. Jin
  • L. P. Li
  • H. Y. Duan
چکیده

Context. Coronal holes (CHs) are deemed to be the sources of the fast solar wind streams that lead to recurrent geomagnetic storms and have been intensively investigated, but not all the properties of them are known well. Aims. We mainly research the response of the solar atmosphere to the magnetic field evolution in a CH region, such as magnetic flux emergence and cancellation for both network (NT) and intranetwork (IN). Methods. We study an equatorial CH observed simultaneously by HINODE and STEREO on July 27, 2007. The HINODE/SP maps are adopted to derive the physical parameters of the photosphere and to research the magnetic field evolution and distribution. The G band and Ca ii H images with high tempo-spatial resolution from HINODE/BFI and the multi-wavelength data from STEREO/EUVI are utilized to study the corresponding atmospheric response of different overlying layers. Results. We explore an emerging dipole locating at the CH boundary. Mini-scale arch filaments (AFs) accompanying the emerging dipole were observed with the Ca ii H line. During the separation of the dipolar footpoints, three AFs appeared and expanded in turn. The first AF divided into two segments in its late stage, while the second and third AFs erupted in their late stages. The lifetimes of these three AFs are 4, 6, 10 minutes, and the two intervals between the three divisions or eruptions are 18 and 12 minutes, respectively. We display an example of mixed-polarity flux emergence of IN fields within the CH and present the corresponding chromospheric response. With the increase of the integrated magnetic flux, the brightness of the Ca ii H images exhibits an increasing trend. We also study magnetic flux cancellations of NT fields locating at the CH boundary and present the obvious chromospheric and coronal response. We notice that the brighter regions seen in the 171 Å images are relevant to the interacting magnetic elements. By examining the magnetic NT and IN elements and the response of different atmospheric layers, we obtain good positive linear correlations between the NT magnetic flux densities and the brightness of both G band (correlation coefficient 0.85) and Ca ii H (correlation coefficient 0.58).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison

The hemispheric pattern of solar filaments is considered using newlydeveloped simulations of the real photospheric and 3D coronal magnetic fields over a 6-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence o...

متن کامل

Temporal Evolution of the Magnetic Network in Polar Coronal Holes

We present an analysis of time series data acquired with the SUMER spectrograph on SoHO in coronal hole regions, being particularly interested to find the fast solar wind origins as low as possible in the solar atmosphere. We study the temporal evolution of the magnetic network as seen in different layers in the transition region (TR). Our results indicate that, in lines originating from low to...

متن کامل

Solar cycle changes in coronal holes and space weather cycles

[1] Potential field source surface models of the coronal magnetic field, based on Mt. Wilson Observatory synoptic magnetograms, are used to infer the coronal hole sources of low-heliolatitude solar wind over approximately the last three solar cycles. Related key parameters like interplanetary magnetic field and bulk velocity are also calculated. The results illustrate how the evolving contribut...

متن کامل

Topologically driven coronal dynamics – a mechanism for coronal hole jets

Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapolations of the observed photospheric field. Using an analytic source-surface model to calculate the magnetic topology of a small bipolar region embed...

متن کامل

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008